Zombie: Middleboxes that
Don’t Snoop

Collin Zhang, Zachary DeStefano, Arasu Arun,
Joseph Bonneau,Paul Grubbs, Michael Walfish

NSDI 2024




(&)

S
[%UUUC..EJ
Middlebox N
o =
o0 =
0 =
A o ="

Client Remote Server



i

Privacy Policy

Can we get the benefits of both worlds?

Zero-Knowledge Proof o the rescue



. 5[3 7
What can we prove in ZK? GEEBOENE

8 6 3

All problems in PSPACE T E s
6 2|8

e A program that checks if an A

assignment of a sudoku is satisfied,
and output 1 or O

o Prove you know how to solve the puzzle
without revealing your solution

e SHA function

o Prove you know a preimage without
revealing it
e Neural Network

o Prove you know some input produce a
certain output without revealing input

) — 7 &
RERLEZ
- 522 X
P o
S 2



Zero-Knowledge Proofs

public inputs

Statement

private inputs ——

e Soundness: A false statement
cannot be proved

e Zero-Knowledge: Verifier learns
nothing about the private inputs

o

prover

yes/no

verifier



How does zero-knowledge proof work?

e Write a program in a high-level language

e Frontend
o A compiler compiles the program to a set of
constraints // x must be 0 or 1
o  Then compile the set of constraints to a o R >/</*iéxx_ii)1,= 3 must be 5
polynomial that always evaluates to O if the else: DTS - g e
constraints are satisfied 7= (x = 1) * (y - 6) =0
e Backend

o Prove: The prover commits to the polynomial
with a technique called polynomial commitment

o Verify: The verifier evaluates the polynomial
at a random point without knowing the
polynomial



Zero-Knowledge Middleboxes (ZKMB)

B 0

[éoooc;l]
D [Sge: ' o
= Middlebox as verifier &
AR
‘ o =
o =
A o =

Client as Prover Remote Server



DecryptAndCheck

Statement: This Program evaluates to yes

public inputs:
encrypted e Check private key commitment
message, @ —— | e Derive pseudorandom pad from the
Private key private key es/no
hash (commit) e Decrypt the message by XOR it Y
- with pseudorandom pad
'I?anm?r;:e e Check message for policy
Private key compliance

client middlebox



ZKMB latency

o ZKMB: Groth 16

o Prover time: 1200 ms

o Verifier time 1.6 ms
e Zombie: Spartan

o Prover time: 345 ms

o Verifier time: 44 ms

e DNS request latency: 20 ms



Zombie

e How can we reduce verifier time while maintain low prover time?
e How can we further reduce the latency?



Batching

e High verification cost => low
throughput

e Batch verification
o Verifier evaluates two polynomials
m  Polynomial encodes the constraints
m  Polynomial encodes the solution of
constraints
o The constraints polynomial is independent
of the inputs, so we can reuse that

e Limitation
o Can only batch proofs from same client

o Client has to accumulate packets to batch
prove them

Average cost to verify a proof (ms)

160 -

=
~
o

120 A

100 A

[o2]
o
1

[=))
o
1

-
o
1

Average cost vs. Batch size for DecryptAndCheck

10 20 30 40 50 60
Batch Size




Optimistic approval

e Relaxed security model => Zero Latency

o Middlebox forward the traffic immediately

o Middlebox expects a proof from the client within a window of time

o If proof is invalid or not received, client banned from the public network
e Security sufficient for dns filtering

o Evenif the client knows IP address, it can't browse the website for too long
e Synergy with batching

o Client can now accumulate proofs and batch proving them!



Precompute

e How can we reduce latency without security compromise?



DecryptAndCheck statement

encrypted
message,
Private key
hash

Private key

Public

Private

Independent of
message

Check private key commitment
Derive pseudorandom pad from the
private key

Decrypt the message by XOR it
with pseudorandom pad

Check message for policy
compliance

yes/no



Precompute: When client is idle

[_éooocj]

@ Middlebox as verifier

Client as Prover Remote Server




Precompute: When client sends a message

H_‘%
=D
[;oooq]
||="I Middlebox as verifier }X{i
/— \
‘ o0 =
0 =
A o =

Client as Prover Remote Server



Decompose of DecryptAndCheck statement

Private key
hash

Private key

Encrypted
message,
Pseudorandom
pad hash

Pseudorandom
pad

_ Public

Private

Public

Private

Prover Cost: 100 ms

Check private key commit
Derive pseudorandom pad
from the private key

Prover Cost: 250 ms

Check pad commit
Decrypted message by XOR
with pad

Check message for policy
compliance

Pseudorandom pad
hash

yes/no



Zombie Improvements

Per-Packet Overhead (DNS)

ZKMB (est.)
Zombie-Standard | v
Zombie-Precomp I Client
; +
ikdletion Middlebox
Zombie-Async | [Z/NCTE

400 300 200 100 O 100 200 300 400 500 600 700 800 900 1,0001,1001,200
Non-Critical Overhead (ms/packet) Critical Overhead (ms/packet)




Zombie Limitations

- Latency
- Best sync mode extra latency: 250ms
- DNS latency: 20ms

- Computation intensive
- 16 cores CPU run 350ms for each DNS request

- The computation will be more intensive for more complex policies
- 6 seconds for Microsoft Purview Data Loss Prevention



Thank youl



