
Zombie: Middleboxes that
Don’t Snoop

Collin Zhang, Zachary DeStefano, Arasu Arun,
Joseph Bonneau,Paul Grubbs, Michael Walfish

NSDI 2024

Client

Middlebox

Remote Server

Can we get the benefits of both worlds?

Zero-Knowledge Proof to the rescue

Privacy Policy

What can we prove in ZK?

All problems in PSPACE

● A program that checks if an
assignment of a sudoku is satisfied,
and output 1 or 0

○ Prove you know how to solve the puzzle
without revealing your solution

● SHA function
○ Prove you know a preimage without

revealing it
● Neural Network

○ Prove you know some input produce a
certain output without revealing input

Zero-Knowledge Proofs

Statement

public inputs

private inputs

yes/no

● Soundness: A false statement
cannot be proved

● Zero-Knowledge: Verifier learns
nothing about the private inputs

prover verifier

How does zero-knowledge proof work?

● Write a program in a high-level language
● Frontend

○ A compiler compiles the program to a set of
constraints

○ Then compile the set of constraints to a
polynomial that always evaluates to 0 if the
constraints are satisfied

● Backend
○ Prove: The prover commits to the polynomial

with a technique called polynomial commitment
○ Verify: The verifier evaluates the polynomial

at a random point without knowing the
polynomial

if x:
 y = 5
else:
 y = 6

// x must be 0 or 1
x * (x - 1) = 0
// if x is 1, y must be 5
x * (y - 5) = 0
// if x is 0, y must be 6
(x - 1) * (y - 6) = 0

Zero-Knowledge Middleboxes (ZKMB)

Client as Prover

Middlebox as verifier

Remote Server

DecryptAndCheck

● Check private key commitment
● Derive pseudorandom pad from the

private key
● Decrypt the message by XOR it

with pseudorandom pad
● Check message for policy

compliance

Statement: This Program evaluates to yespublic inputs:
encrypted
message,
Private key
hash (commit)
private
inputs:
Private key

yes/no

client middlebox

ZKMB latency

● ZKMB: Groth 16
○ Prover time: 1200 ms
○ Verifier time 1.6 ms

● Zombie: Spartan
○ Prover time: 345 ms
○ Verifier time: 44 ms

● DNS request latency: 20 ms

Zombie

● How can we reduce verifier time while maintain low prover time?
● How can we further reduce the latency?

Batching

● High verification cost => low
throughput

● Batch verification
○ Verifier evaluates two polynomials

■ Polynomial encodes the constraints
■ Polynomial encodes the solution of

constraints
○ The constraints polynomial is independent

of the inputs, so we can reuse that
● Limitation

○ Can only batch proofs from same client
○ Client has to accumulate packets to batch

prove them

Optimistic approval

● Relaxed security model => Zero Latency
○ Middlebox forward the traffic immediately
○ Middlebox expects a proof from the client within a window of time
○ If proof is invalid or not received, client banned from the public network

● Security sufficient for dns filtering
○ Even if the client knows IP address, it can’t browse the website for too long

● Synergy with batching
○ Client can now accumulate proofs and batch proving them!

Precompute

● How can we reduce latency without security compromise?

DecryptAndCheck statement

● Check private key commitment
● Derive pseudorandom pad from the

private key
● Decrypt the message by XOR it

with pseudorandom pad
● Check message for policy

compliance

encrypted
message,
Private key
hash yes/no

Independent of
message

Public

Private
Private key

Precompute: When client is idle

Client as Prover

Middlebox as verifier

Remote Server

Precompute: When client sends a message

Client as Prover

Middlebox as verifier

Remote Server

+

Decompose of DecryptAndCheck statement

● Check private key commit
● Derive pseudorandom pad

from the private key

Private key
hash

Private key

Pseudorandom pad
hash

● Check pad commit
● Decrypted message by XOR

with pad
● Check message for policy

compliance

Encrypted
message,
Pseudorandom
pad hash

Pseudorandom
pad

yes/no

Public

Public

Private

Private

Prover Cost: 100 ms

Prover Cost: 250 ms

Zombie Improvements

Zombie Limitations

- Latency
- Best sync mode extra latency: 250ms
- DNS latency: 20ms

- Computation intensive
- 16 cores CPU run 350ms for each DNS request

- The computation will be more intensive for more complex policies
- 6 seconds for Microsoft Purview Data Loss Prevention

Thank you!

